Effective interaction between helical biomolecules.

نویسندگان

  • E Allahyarov
  • H Löwen
چکیده

The effective interaction between two parallel strands of helical biomolecules, such as deoxyribose nucleic acids (DNA), is calculated using computer simulations of the "primitive" model of electrolytes. In particular we study a simple model for B-DNA incorporating explicitly its charge pattern as a double-helix structure. The effective force and the effective torque exerted onto the molecules depend on the central distance and on the relative orientation. The contributions of nonlinear screening by monovalent counterions to these forces and torques are analyzed and calculated for different salt concentrations. As a result, we find that the sign of the force depends sensitively on the relative orientation. For intermolecular distances smaller than 6 A it can be both attractive and repulsive. Furthermore, we report a nonmonotonic behavior of the effective force for increasing salt concentration. Both features cannot be described within linear screening theories. For large distances, on the other hand, the results agree with linear screening theories provided the charge of the biomolecules is suitably renormalized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analytic Technique and Experimental Research Methods of Post-buckling about Slender Rod Strings in Wellbore

The buckling behavior of rod strings in wellbore is one of the key issues in petroleum engineering. The slender rod strings in vertical wellbore were selected as research objects. Based on the energy method, the critical load formulas of sinusoidal and helical buckling were derived for the string with the bottom of the wellbore pressure. According to the sinusoidal and helical buckling’s geomet...

متن کامل

Investigation of Solvent Effects on Interaction of Single-Strand DNA with Open-End of Single Walled Carbon Nanotubes Using QM and MM methods

The interaction of biomolecules with carbon nanotubes (CNTs) has generated a great deal ofinterest in the past few years. The interaction between B-form single-strand DNA (ssDNA) andsingle-walled carbon nanotubes (SWCNTs) is a subject of intense current interest; however thereare a relatively small number of papers in the literature dealing with interaction of DNA andSWCNTs. In this work we inv...

متن کامل

Adenine molecule interacting with golden nanocluster: A dispersion corrected DFT study

The interaction between nanoparticles and biomolecules such as protein andDNA is one of the major instructions of nanobiotechnology research. In this study,we have explored the interaction of adenine nucleic base with a representativegolden cluster (Au13) by using dispersion corrected density functional theory(DFT-D3) within GGA-PBE model of theory. Various active sites ...

متن کامل

Studies of Interfacial Interaction between Polymer Components on Helical Nanofiber Formation via Co-Electrospinning

Helical fibers in nanoscale have been of increasing interest due to their unique characteristics. To explore the effect of polymer type on helical fiber formation, three polymer systems, Poly(m-phenylene isophthalamide) (Nomex)/polyurethane (TPU), polystyrene (PS)/TPU and polyacrylonitril (PAN)/TPU are used to fabricate helical nanofibers via co-electrospinning. Differential scanning calorimetr...

متن کامل

An Inorganic Twist in Nanomaterials: Making an Atomically Precise Double Helix

Molecular helical structures are prevalent in biomolecules such as proteins and polynucleotides (e.g., DNA, RNA). This structural arrangement imparts additional stability to biomolecules necessary for many important biological functions including replication, signal transduction, and catalysis. Since the revolutionary discovery in 1953 that DNA structure exists as a double helix (Figure 1A), nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 62 4 Pt B  شماره 

صفحات  -

تاریخ انتشار 2000